

University of London

Preventing Allergies in Practice

Dr Tom Marrs Consultant Allergist, Evelina, St Thomas' Senior Honorary Lecturer, King's College London

Faculty Disclosure

Nothing to disclose	
Yes, as follows:	
Honoraria/Expenses	
Consulting/Advisory Board	
Speakers Bureau	
Funded Research (Individual)	
Funded Research (Institution)	
Royalties/Patent	
Stock Options	
Ownership/Equity Position	
Employee	
Other	

Off-Label Product Use

 Will you be presenting or referencing off-label or investigational use of a therapeutic product?

 No

 Yes, as follows:
 Mention peanut immunotherapy research studies at Evelina

Key Points

- Why do babies develop food allergy?
- Regular consumption of peanut can prevent peanut allergy
- Prioritising peanut
- Eczema as a target group
- Pathway
- Intervention
- Assessing a pathway for babies

Which comes first, eczema or food allergy?

Arachis oil-based cream use 个 in infants who develop peanut allergy

Lack et al. 2003 New England Journal of Medicine

Environmental peanut dust predicts allergy, especially amongst eczema

0.7-SEVERE ECZEMA All children Predicted probability of ר ני **ECZEMA** History of AD 0.6-···· History of severe AD Ň ALLEI **ALL CHILDREN** 0.5-PEANUT 0.4-0.3-EPE (ug/g) 512 1024 2048 4096 124 8 16 32 64 256 2 0.2 12 10 0 2 3 5 6 8 9 11 **ENVIRONMENTAL PEANUT EXPOSURE**

Brough HA et al J Allergy Clin Immunol. 2015;135(1):164-170.

Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy

Methods

- 5171 Jewish school children in UK and 5615 Jewish school children in Israel were compared for food allergies and atopy.
- Questionnaire based assessment of peanut allergy validated by challenges.
- Infant weaning for peanut and other foods was determined in infants using a validated FFQ.

Du Toit G et al. J Allergy Clin Immunol 2008; 122: 984-91.

Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy

Du Toit G et al. J Allergy Clin Immunol 2008; 122: 984-91.

J Allergy Clin Immunol 2008; 121: 1331-6

Per-protocol Adherence: Individual Foods

Food	Total weekly Guideline Amount (2g allergen protein twice weekly)	% per-protocol adherent* (3g allergen protein per week)
Milk	2 small pots (40-60g) of yoghurt	85.2
Peanut	3 rounded teaspoons peanut butter	61.9
Fish	2 x fish fingers or ¼ fish fillet (25g)	60.0
Sesame	3 teaspoons tahini paste	52.3
Egg	1 small egg	43.1
Wheat	2 wheat based biscuit cereal	39.1

*Consumed 75% of total weekly amount

Perkin M, et al. JACI. 2016; 137(5): 1477-1486.e8

Baseline EAT @3 months; similar to your clinic?

- Visible eczema 24.4%
- Parental history of atopy (any eczema, asthma or hay fever) 81.9%
- Prevalence of SPT >0 mm 5.1% (33/652);
 - Nine children sensitized to cow's milk (SPT range, 2.5-7 mm)
 - 9 to peanut (SPT range 1-4 mm)
 - 24 to (raw) egg (SPT range, 1.75-16 mm)
 - none to sesame
 - 1 to cod (SPT range, 2.75 mm)
 - 2 to wheat (SPT range 1.5-2.25 mm)
- Eight children were sensitized to 2 or more foods

Seven IDs Challenge +ve Food Allergy at Enrolment

ID	Food	FC symptoms	FC treatment	Reaction dose
1	Egg	Itchy rash	Antihistamines	Egg - dose 1 (0.1g)
2	Milk	≥3 hives	No treatment	Milk - dose 1 (0.1g)
3	Peanut	Rash, ≥3 hives and scratching	Antihistamines	Peanut - dose 1 (0.1g)
3	Milk	≥3 hives	No treatment	Milk - dose 1 (0.1g)
4	Egg	Mild abdominal pain*	No treatment	Egg - safety dose 1 (0.01g)
4	Milk	≥3 hives	No treatment	Milk - dose 1 (0.1g)
5	Egg	≥3 hives	No treatment	Egg - dose 1 (0.1g)
6	Peanut	Vomiting and scratching	No treatment	Peanut - dose 4 (1.2g)
6	Milk	≥3 hives	Antihistamines	Milk - dose 3 (0.5g)
7	Wheat	≥3 hives	Antihistamines	Wheat - dose 1 (0.1g)
*Ind	*Indeterminate result: refused to return for repeat challenge			

Perkin, Logan, Tseng et al 2016 NEJM; 'Randomized Trial of Introduction of Allergenic Foods in Breast-Fed Infants'

EAT Study Breastfeeding Rates Between Groups

Perkin M, Logan K et al. Enquiring about tolerance (EAT) study: Feasibility of an allergenic food introduction regimen. 2016 JACI

EAT RESULTS: Prevalence of Allergy to <u>One or More</u> Foods

Intention to treat; 20% Non-signif drop

Per Protocol - 67% Significant drop

Perkin M, Logan K, Tseng A et al. Randomized trial introducing allergenic foods in breastfed infants. March 2016

Eating more peanut protects more against peanut allergy Eating more egg protects more against egg allergy

Perkin M, Logan K, Tseng A et al. Randomized trial introducing allergenic foods in breastfed infants. March 2016

EAT Risk Factors for allergy & poor consumption

Table S5. Logistic Modelling and Dominance Analysis of Factors Influencing the Primary Outcome

	Primary outcome 6.4% (74/1161)		Primary outcome dominance analysis	
	OR (95% CI)	p value	Dominance statistic	Rank
Study group (early-introduction group)	0.75 (0.46-1.24)	0.26	1.5%	6
Ethnicity (non-white)	2.09 (1.19-3.66)	0.01	11.3%	2
Visible eczema at 3m visit	6.09 (3.67-10.1)	< 0.001	72.4%	1
Maternal atopy	1.49 (0.86-2.59)	0.15	3.4%	4
Maternal education (≤18 years)	0.58 (0.28-1.23)	0.16	2.7%	5
Siblings (any)	1.95 (1.11-3.42)	0.02	8.9%	3

Table S14. Logistic Modelling and Dominance Analysis of Factors Influencing Early-Introduction Group Non-Adherence

	EIG non-adherence 56.6% (286/505)		EIG dominance	analysis
	OR (95% CI)	p value	Dominance statistic	Rank
Ethnicity (non-white)	2.21 (1.18-4.14)	0.01	27.4%	1
Visible eczema at 3m visit	1.38 (0.87-2.19)	0.18	10.9%	4
New onset eczema (4-6m)	1.35 (0.75-2.41)	0.32	3.8%	7
Maternal atopy	1.23 (0.84-1.79)	0.29	5.1%	5
Maternal education (≤18 years)	1.12 (0.68-1.83)	0.66	0.5%	13
Maternal smoking	0.78 (0.27-2.28)	0.65	1.4%	11
Caesarean delivery	1.21 (0.80-1.83)	0.38	3.9%	6
Sex (female)	1.21 (0.84-1.75)	0.39	3.3%	8
Siblings (any)	1.10 (0.76-1.61)	0.70	1.6%	10
QOL psychological domain (>median)	0.69 (0.47-1.00)	0.05	17.8%	3
Skin-prick test positive at 3m visit	1.01 (0.39-2.60)	0.98	0.6%	12
Any symptoms to EIG foods(4-6m)	1.70 (1.02-2.86)	0.04	22.2%	2
Any symptoms to other foods (4-6m)	1.34 (0.53-3.35)	0.54	1.7%	9

Perkin M, Logan K, Tseng A et al. Randomized trial introducing allergenic foods in breastfed infants. March 2016

Efficacy of the EAT study among infants at high risk of developing food allergy

Distribution of enrolment (3 months of age) risk factors (n=1170) Visible eczema: (moderate SCORAD 15 to <40)
EIG 22.6% versus SIG 46.7% developed any food allergy*

• EIG 16.1% versus SIG 43.3% developed an egg allergy*

EIG: Early Introduction Group SIG: Standard Introduction Group

Perkin 2019 JACI in press; the efficacy of the EAT intervention

Factors influencing adherence in a trial of early introduction of allergenic food

Challenges experienced with the early introduction and sustained consumption of allergenic foods in the EAT study: a qualitative analysis

Practice

My baby seems to get very constipated when he eats egg, so I have not been giving him the guideline amounts

> Theme 2: **Concerns about Reactions**

My baby has developed eczema and ? rattling noise when breathing is wheezing or to do with a cold

Very difficult to get egg white into smooth consistency

My only worry is that I might be feeding my baby too much food and he is not having much milk as a result me 3: Practica

Becoming fussy with food. Struggling to get food into her, both intervention foods and others. No 2 days are the same at present

policy

h and a service of the service of th

Real of the

Baby ill with chest infection and then stomach bug, consequently he had a very low appetite

An analysis of open-text questionnaire responses

To eat or not to eat...

Number Needed to Treat

Perkin 2019 JACI in press; the efficacy of the EAT intervention

How should a pathway for babies be designed?

- Age group; any baby under 1 year
- Access; ensure multiple referral and access points
- Timing; quick first appointment and reassess SPT if older than 7 days
- Assessment; SPT peanut and peanut butter, validated eczema exam
- Intervention; LEAP
- Support; written, verbal, reference, email and phone information
- Follow up; 4 weeks and 1 year
- Outcomes; continued consumption
- Key performance indicators; target babies, uptake, consumption, % oral tolerance failures, patient experience, number of other foods introduced

Tailoring support for introducing peanut

- Home introduction advice, written information and email contact
- Supervised introduction; single 12 gram portion in consultation
 - Usually peanut butter from spoon
 - Monitor for one hour after
- Challenge; 12 gram cumulative dose 3 to 4 portions
- Follow up telephone consultation after 4 weeks
- Offer repeat skin prick test + / supervised introduction if symptoms

THREE HEAPED TEASPOONS (OR PACKET PORTIONS)

PER WEEK

Commercial packet portions

.... for at least one year, and preferably for the first five years of life.

8 gram Heaped Teaspoon of peanut butter

8 grams per week confers significant protection

1.5 teaspoons of

peanut powder

Steps in preventing peanut allergy

- Early recognition of risk factors
- Are parents concerned baby may develop peanut allergy?
- Do other family members have peanut allergy?
- Would parents be happy for baby to eat peanut regularly at home?
- SPT
- ? Challenge
- ? Refer peanut immunotherapy study

Possible performance indicators

- What balance of babies are referred and engage?
 - Age
 - Eczema history and severity
 - Ethnicity
 - Maternal age
 - Other food allergies
- Safety; number of anaphylaxis in hospital and at home
- Uptake of intervention (at one month) and consumption at 12 months
- % oral tolerance failures
- Patient experience
- Number of other foods introduced

Acknowledgements

EAT Study Support;

Medical Research Council

Food Standards Agency UK

NIHR Biomedical Research Centre

King's College London

University of Manchester; iFAAM project

Children's Allergies Team;

- Roisin Fitzsimons
- Cathy Hunt
- Rebecca Batt
- Ruth Chalmers
- Rachel DeBoer

EAT (& LEAP) Study Teams;

- Michael Perkin
- Gideon Lack
- Carsten Flohr
- Kirsty Logan
- Bunmi Raji
- Suzana Radulovic
- Joanna Craven
- Mary Feeney
- Charlotte Stedman
- George du Toit

Key Points

- Why do babies develop food allergy?
- Regular consumption of peanut can prevent peanut allergy
- Prioritising peanut
- Eczema as a target group
- Pathway
- Intervention
- Assessing a pathway for babies